Social Edge Computing

Empowering Human-Centric Edge Computing, Learning and Intelligence

,

Éditeur :

Springer

Paru le : 2023-06-22

The rise of the Internet of Things (IoT) and Artificial Intelligence (AI) leads to the emergence of edge computing systems that push the training and deployment of AI models to the edge of networks for reduced bandwidth cost, improved responsiveness, and better privacy protection, allowing for the u...
Voir tout
Ce livre est accessible aux handicaps Voir les informations d'accessibilité
Ebook téléchargement , DRM LCP 🛈 DRM Adobe 🛈
Compatible lecture en ligne (streaming)
168,79
Ajouter à ma liste d'envies
Téléchargement immédiat
Dès validation de votre commande
Image Louise Reader présentation

Louise Reader

Lisez ce titre sur l'application Louise Reader.

À propos


Éditeur

Collection
n.c

Parution
2023-06-22

Pages
172 pages

EAN papier
9783031269356

Auteur(s) du livre


Dong Wang is currently an Associate Professor in the School of Information Sciences at the University of Illinois Urbana-Champaign (UIUC). Before joining UIUC, he previously served as an associate professor and assistant professor in the Computer Science and Engineering Department at the University of Notre Dame. Dong Wang received his Ph.D. in Computer Science from UIUC in 2012. He has published more than 160 referred publications in networked sensing, edge computing/IoT, distributed systems, and social computing, with emphasis on human-centric challenges. He authored a monograph “Social Sensing: Building Reliable Systems on Unreliable Data” published by Elsevier 2015. His research interests lie in the area of social sensing, intelligence and computing, human-centered AI, human cyber-physical systems, and smart city applications. He received the NSF CAREER Award, Google Faculty Research Award, Young Investigator Program (YIP) Award from Army Research Office, NSF CRII Award, Wing Kai Cheng Fellowship from University of Illinois, the Best Paper Award of 2022 ACM/IEEE International Conference on Advances in Social Networks Analysis and Mining (ASONAM), the Best Paper Award of 16th IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS), the Best Paper Award Candidate from 8th IEEE International Conference on Smart Computing (SMARTCOMP). He also served as the Steering Committee Member of SocialSens workshop 2015-2022 and TPC co-Chair of IEEE DCoSS 2022.Daniel 'Yue' Zhang is currently a research scientist at Amazon Alexa AI, USA. Daniel obtained his Ph.D. from the department of Computer Science and Engineering at University of Notre Dame, IN, USA in 2020. He received his M.S. degree from Purdue University, West Lafayette, IN, USA, in 2012 and a B.S. degree from Shanghai Jiao Tong University, Shanghai, China, in 2008. His research interests include human-centric learning and computing, social sensing, edge computing, and natural language understanding. Daniel has published over 70 peer reviewed articles and served as TPC and reviewers in multiple top conferences and journals in related fields.

Caractéristiques détaillées - droits

EAN PDF
9783031269363
Prix
168,79 €
Nombre pages copiables
1
Nombre pages imprimables
17
Taille du fichier
6390 Ko
EAN EPUB
9783031269363
Prix
168,79 €
Nombre pages copiables
1
Nombre pages imprimables
17
Taille du fichier
25088 Ko

Suggestions personnalisées