Latent Factor Analysis for High-dimensional and Sparse Matrices

A particle swarm optimization-based approach

,

Éditeur :

Springer

Paru le : 2022-11-15

Latent factor analysis models are an effective type of machine learning model for addressing high-dimensional and sparse matrices, which are encountered in many big-data-related industrial applications. The performance of a latent factor analysis model relies heavily on appropriate hyper-parameters....
Voir tout
Ce livre est accessible aux handicaps Voir les informations d'accessibilité
Ebook téléchargement , DRM LCP 🛈 DRM Adobe 🛈
Compatible lecture en ligne (streaming)
47,46
Ajouter à ma liste d'envies
Téléchargement immédiat
Dès validation de votre commande
Image Louise Reader présentation

Louise Reader

Lisez ce titre sur l'application Louise Reader.

À propos

Auteur

Éditeur

Collection
n.c

Parution
2022-11-15

Pages
92 pages

EAN papier
9789811967023

Auteur(s) du livre


Dr. Ye Yuan is an Associate Professor at the College of Computer and Information Science, Southwest University. His main research fields are data mining and machine learning. He has published over 24 SCI/EI papers, including for top journals and conferences like IEEE T. KDE, CYB, WWW and ECAI. He has applied for 11 and holds 5 national invention patents and won First Prize in the Wu Wenjun AI Science and Technology Progress Award and First Prize in the Chongqing Science and Technology Progress Award.Dr. Xin Luo is a Professor at the College of Computer and Information Science, Southwest University. His current research interests include machine intelligence, big data, and cloud computing. He has published over 200 papers (including over 87 IEEE TRANSACTIONS papers and 17 highly cited papers in ESI) in the above areas. He holds 35 national invention patents. He was part of the Pioneer Hundred Talents Program of the Chinese Academy of Sciences in 2016, the Advanced Support of the Pioneer Hundred Talents Program of Chinese Academy of Sciences in 2018, and the National High-Level Talents Special Support Program in 2020. He won First Prize in the Chongqing Natural Science Award (2019), First Prize in the Wu Wenjun AI Science and Technology Progress Award (2018) and First Prize in the Chongqing Science and Technology Progress Award (2018). He serves as an Associate Editor for the IEEE/CAA Journal of Automatica Sinica, and for IEEE Transactions on Neural Networks and Learning Systems. He received the Outstanding Associate Editor Award from the IEEE/CAA Journal of Automatica Sinica in 2020.

Caractéristiques détaillées - droits

EAN PDF
9789811967030
Prix
47,46 €
Nombre pages copiables
0
Nombre pages imprimables
9
Taille du fichier
4106 Ko
EAN EPUB
9789811967030
Prix
47,46 €
Nombre pages copiables
0
Nombre pages imprimables
9
Taille du fichier
19180 Ko

Suggestions personnalisées