Tsunami Data Assimilation for Early Warning

Éditeur :

Springer

Paru le : 2022-10-26

This book focuses on proposing a tsunami early warning system using data assimilation of offshore data. First, Green’s Function-based Tsunami Data Assimilation (GFTDA) is proposed to reduce the computation time for assimilation. It can forecast the waveform at Points of Interest (PoIs) by superposin...
Voir tout
Ce livre est accessible aux handicaps Voir les informations d'accessibilité
Ebook téléchargement , DRM LCP 🛈 DRM Adobe 🛈
Compatible lecture en ligne (streaming)
158,24
Ajouter à ma liste d'envies
Téléchargement immédiat
Dès validation de votre commande
Image Louise Reader présentation

Louise Reader

Lisez ce titre sur l'application Louise Reader.

À propos

Auteur

Éditeur

Collection
n.c

Parution
2022-10-26

Pages
97 pages

EAN papier
9789811973383

Auteur(s) du livre


Dr. Yuchen Wang is a postdoctoral researcher at Japan Agency for Marine-Earth Science and Technology. He received the bachelor’s degree in physics at Peking University. He received the master’s degree and Ph.D. degree in earth and planetary science at the University of Tokyo. His research interest is giant earthquakes and tsunamis. He has been working on tsunami early warning for disaster mitigation. He improved data assimilation algorithm to achieve a rapid and accuracy tsunami forecast. He has published 21 peer-reviewed journal articles and worked as the reviewer for 9 journals including Nature Communications, Journal of Geophysical Research: Solid Earth, and Natural Hazards and Earth System Sciences. He is the principal investigator of the KAKENHI 19J20203 on tsunami data assimilation sponsored by the Japan Society for the Promotion of Science. His research is in collaboration with researchers all over the world.

Caractéristiques détaillées - droits

EAN PDF
9789811973390
Prix
158,24 €
Nombre pages copiables
0
Nombre pages imprimables
9
Taille du fichier
4956 Ko
EAN EPUB
9789811973390
Prix
158,24 €
Nombre pages copiables
0
Nombre pages imprimables
9
Taille du fichier
27689 Ko

Suggestions personnalisées